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Chapter 23

Evaluating Science and
Technology Research Institutes

This chapter employs Evaluatology to evaluate scientific and technological research in-
stitutes. I conceived the core concept, which Dr. Fanda Fan and I jointly implemented.

23.1 Introduction
As an independent entity or being affiliated with a university or company, a science
and technology research institute (in short, STRI) plays an essential role as a driv-
ing force behind scientific and technological (S&T) progress. Past evaluation efforts
regarding STRIs have been overly simplistic, primarily reducing their performance to
mere quantification of publications, citations, or other bibliometric indicators. However,
it only captures a narrow slice of the overall influence generated by scientific research
institutions.

Within the discipline of Evaluatology, an STRI is formally treated as an EO. The
essence of evaluation is to uncover the effects of an EO on a set of AOs under a clearly
defined SES. From this perspective, the effects of an STRI should not be limited to
academic influence alone. Instead, they encompass a broader spectrum of outcomes,
including national development, human progress, and industrial advancement.

Moreover, the observable outcomes on these AOs—whether obtained through mea-
surement or testing—are inevitably shaped by both the EOs and the EXOs within the
SES. In practice, an AO such as a country’s strategic alignment, an industry’s innovation
vitality, or humanity’s sustainable development index reflects not only the direct effect
transmitted from the EO, but also the derived or confounding influences introduced
by EXOs, including talent resources, international cooperation, intellectual property
protection, and the technology–capital environment. Evaluatology, therefore, requires
that every measured or tested effect on an AO be decomposed along the EO → AO
and EXO→AO pathways, ensuring that the outcome accurately isolates the effect at-
tributable to the EO itself. Only through such precise attribution can the SES produce
valid and unbiased judgments of an STRI’s true effect on its AOs.
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Finally, it is essential to recognize that the EO itself is not monolithic. An STRI
consists of multiple internal components—such as talent development, evaluation mech-
anisms, public platforms, academic cooperation, management strategies, and technolog-
ical specialization—each functioning as an essential component that generates its own
effect pathways. These internal components jointly induce heterogeneous effects on the
AOs, forming layered causal chains within the SES. A rigorous evaluation must there-
fore disentangle the contributions of each component of the EO, identify the internal
effect mechanisms through which they influence different AOs, and determine how their
interactions amplify or attenuate the overall effect of STRI. An SES for evaluating an
STRI is shown in Figure 23.1.

The remainder of this chapter is organized to progressively deepen this perspective.
Section 23.2 first reviews the academic-centric approaches that historically dominated
the evaluation of an STRI, highlighting their limitations within the SES. Section 23.3
then expands the AO from narrow scholarly outputs to the broader impacts on national
development, human progress, and industrial advancement. Section 23.4 develops the
causal logic for isolating the genuine EO-induced effect from the influences of the EXOs.
Finally, Section 23.5 decomposes the EO into its internal components and examines
how these internal effect mechanisms co-produce the observable outcomes on the AOs.
Together, these sections establish the causal and structural foundations for evaluating
an STRI.

23.2 Traditional Evaluation Methodologies of Academic
Achievements

For a long period, the evaluation of the STRI has been dominated by academic-oriented
evaluation systems. Traditional frameworks equate S&T almost entirely with academic
achievements, relying primarily on bibliometric indicators such as publication counts,
citation impact, journal rankings, highly cited papers, and awards within the scientific
community.

Core Journal Evaluation: The quality and influence of academic journals are com-
monly measured by a series of quantitative indicators, which are defined and published
by various data providers.

• Impact Factor (IF): As the most established and widely recognized metric, the
Impact Factor is published annually by Clarivate in its Journal Citation Reports
(JCR). Its formula is:

IFyear Y =
Citations in year Y to articles published in (Y-1) and (Y-2)

Total citable items published in (Y-1) and (Y-2) . (23.1)

The Impact Factor reflects the average number of citations received by a journal’s
articles in the two years following publication. It has long been considered the “gold
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Figure 23.1: An SES for Evaluating an STRI.

standard” for journal quality, yet it faces criticism for its short calculation window,
susceptibility to skew from a few highly cited articles, and lack of comparability
across different scientific fields [66].

• CiteScore: Introduced by Elsevier based on its Scopus database, CiteScore is a
major alternative to the IF. It utilizes a longer four-year window for both citations
and publications and includes a broader range of document types (e.g., reviews,
letters), aiming to provide a more comprehensive, transparent, and robust metric
[199]. The formula is:

CiteScoreY =

∑Y−1
i=Y−4 Citationsi∑Y−1

i=Y−4 Published Documentsi
. (23.2)

• SCImago Journal Rank (SJR): Also derived from the Scopus database, the SJR
incorporates an algorithm similar to Google’s PageRank [137]. It measures not
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just the quantity but also the “quality” of citations, assigning a higher weight to
citations from more prestigious journals. This allows SJR to measure the scientific
prestige of a journal rather than just its raw citation traffic [57]. Due to its iterative
nature, it does not have a simple fractional formula.

• Source Normalized Impact per Paper (SNIP): The SNIP metric is designed to
address the challenge of cross-disciplinary comparisons. It normalizes a journal’s
raw citation impact by the “citation potential” of its specific subject field, thus
measuring the relative impact of a paper within its domain. A SNIP value greater
than 1.0 indicates that the journal’s citation impact is higher than the average for
its field [114]. The formula is expressed as:

SNIP =
Raw Impact per Paper (RIP)

Relative Citation Potential (RCP) . (23.3)

Journal Ranking and Partitioning: Beyond single metrics, journal partitioning
provides a more intuitive hierarchical classification, helping researchers quickly evaluate
a journal’s standing within its discipline.

• JCR Quartiles: Published by Clarivate, this system ranks journals within a subject
category based on their Impact Factor. The list is then divided into four equal
parts: Q1 (top 25%), Q2 (25-50%), Q3 (50-75%), and Q4 (bottom 25%) [38].

• CAS Partition: The Chinese Academy of Sciences (CAS) partition is widely used
in the Chinese academic community. It is based on a journal’s three-year average
IF and employs a “pyramid” distribution model. Within each discipline, the top
5% of journals are assigned to Zone 1, 6%-20% to Zone 2, 21%-50% to Zone 3,
and the remainder to Zone 4. The most elite journals in Zones 1 and 2 are further
designated as “Top Journals” [35].

Conference Ranking and Partitioning: In rapidly evolving fields such as Computer
Science, top-tier academic conferences are often considered more prestigious than many
journals due to their short review cycles and ability to disseminate cutting-edge research
quickly. The evaluation of conferences typically relies on peer-based expert evaluation
rather than a single quantitative formula.

• CCF Recommended International Conference List: Curated by the China Com-
puter Federation (CCF), this list categorizes international conferences in computer
science into three tiers: A, B, and C. Tier A represents the top-tier conferences
with the highest academic impact. The evaluation criteria are multifaceted, con-
sidering a conference’s history, review quality, paper acceptance rate, and overall
influence. For example, the Conference on Neural Information Processing Systems
(NeurIPS) is ranked as a Tier A conference [34].
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• CORE Ranking: Published by the Computing Research and Education Association
of Australasia, the CORE ranking is another internationally recognized system for
computer science conferences. It classifies venues into four tiers: A* (flagship), A
(excellent), B (good), and C (standard). NeurIPS is ranked as A* in this system
[40].

In summary, the traditional evaluation of academic achievements heavy relies on a
mature yet limited set of bibliometrics and ranking systems. Under this paradigm, the
EO is implicitly judged through a narrowly defined subset of academic outputs, while the
broader effects on national development, human progress, and industrial advancement
remain largely unexamined. Consequently, these academic-centric methods capture only
superficial manifestations of research activity rather than the full causal contributions
of the research institute to its affected objects.

23.3 Beyond Academic Influence: An SES for STRIs
The SES constitutes the core evaluation model of Evaluatology. It formalizes how an
EO produces observable effects on a set of AOs under specific interrogation conditions,
while accounting for the influence of EXOs. Within this framework, STRI activities are
interpreted through their effect pathways, allowing each measurable or testable outcome
on an AO to be traced back to the EO, the EXOs, or their interactions. The SES
therefore models the causal architecture of STRI by integrating three components—EO,
EXO, and AO—into a unified structure that links institutional capability, environmental
context, and societal effects with conceptual and methodological coherence.

At the top of the SES resides the EO, representing the entity under investigation that
directly undertakes innovation and knowledge-creation activities. Each EO is composed
of multiple internal components—talent cultivation, research management, evaluation
and incentive structures, public platforms, and technological specialization—which to-
gether form its internal effect mechanisms. These components of EOs jointly shape the
intrinsic capability of the organization to generate, transform, and disseminate scientific
and technological knowledge, and they govern how the EO ultimately induces effects on
its AOs within the SES.

Beyond the EO are the EXOs, which represent the objects that influence, constrain,
or amplify the EO’s ability to generate effects within the SES. Typical EXOs include
talent resources, funding mechanisms and policies, international cooperation, govern-
ment relations, intellectual property protection, and technology–capital markets. The
EO–EXO interface delineates the dynamic boundary through which policy incentives,
resource flows, and knowledge exchange operate, thereby shaping how the EO’s internal
capabilities are converted into measurable and testable effects on the AOs.

These effects ultimately materialize in the AOs, which constitute the domains that
receive and exhibit the consequences of scientific and technological activity. Importantly,
AOs should not be limited to academic outputs such as publications or citations. In the
context of STRI, AOs encompass three higher-level spheres of societal influence:
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• National Development —national competitiveness, strategic security, and policy
alignment;

• Human Progress—knowledge, social welfare, sustainability, equity, and global well-
being;

• Industrial Advancement —technological upgrading, productivity enhancement,
and economic transformation.

Together, these domains reflect the full spectrum of effects that S&T can induce
across civilization. A comprehensive evaluation of S&T must therefore quantify not
only scholarly achievements but also the multi-domain consequences produced through
the EO→ AO, EXO→ AO causal pathways within the SES.

To operationalize the SES for an STRI within the framework of Evaluatology, the
evaluator relies on two fundamental interrogations: measurement and testing. Together,
they attribute values to the observable effects on the AOs and verify whether propositions
or models about the EO-induced effects conform to test oracles.

Measurement attributes values to the observable effects produced along the EO →
AO and EXO → AO pathways under specified ECs. Each indicator corresponds to a
measurable manifestation of these causal relationships. For example, the rate of scien-
tific research achievement transformation and the rate of technology commercialization
quantify how S&T generated by the EO propagate into industrial and economic AOs.
Indicators such as the intensity of international research collaboration and the proportion
of joint international publications capture cross-border knowledge flows and reflect the
EO’s contribution to global scientific exchange. Policy-oriented indicators—including
industrial policy sensitivity and alignment with national strategies—measure how EO
activities influence country-level AOs, while the Human Development Index (HDI) ex-
tends measurement to humanitarian AOs by linking scientific and technological progress
to improvements in human well-being. Measurement thus relies on observable data from
administrative records, research output databases, collaboration networks, policy doc-
uments, and socio-economic statistics, and converts them into comparable numerical
quantities.

Testing is a verification process of running test cases to determine whether a propo-
sition or a model about the EO’s effect on its AOs conforms to a test oracle. In the
context of STRI, a test oracle specifies the mandated or expected outcomes of S&T under
a given SES—for example, a target level of national strategic impact, a benchmark for
global sustainable development performance, or a required threshold of industrial compet-
itiveness. A test case is a predefined interrogation condition, consisting of selected EO
components, EXOs, AOs, time windows, and data samples, under which the measured
indicators are computed. Testing executes these test cases and compares the actual
measured outcomes with those mandated by the corresponding test oracles, yielding
pass/fail decisions or acceptance/rejection of propositions such as “STRI is aligned with
national strategies” or “STRI significantly promotes global sustainable development.”

Through iterative cycles in which measurement provides quantitative inputs and
testing verifies explicitly defined test oracles, the methodology ensures that evaluation
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outcomes are both numerically grounded and logically consistent.

23.4 Accurate Attribution: Identifying the True Effect of
EO

Within the SES, the causal structure of evaluation is inherently interconnected. Objects
—including STRIs, journals, conferences, public platforms, and temporal environments
—continuously interact and generate overlapping effects across different objects of the
system. In this SES, the EXOs—such as policy incentives, funding programs, collabora-
tion opportunities, and platform visibility—are not static backgrounds but active objects
that induce their own effects on the AOs and modulate the effects originating from the
EO. Consequently, any observable outcome on an AO represents a composite effect that
includes true EO-induced influence, EXO-induced influence, and their interaction-driven
derived effects.

Accurate attribution seeks to isolate the true EO-induced effect by disentangling these
interwoven causal sources. Empirically, only the AO outcomes are directly observable.
Let ŶAO denote the measured effect on an AO, which aggregates contributions from
multiple pathways:

ŶAO = fEO
(
EO→ AO

)
+ fEXO

(
EXO→ AO

)
+ fint

(
EO,EXO→ AO

)
+ ε, (23.4)

where fEO represents the true effectof the EO on the AO, fEXO represents the effect
induced by the EXOs, fint captures the interface through which EXOs amplify, attenuate,
or reshape the EO’s effect on the AO, and ε represents the noise term. Because the
evaluator can observe only ŶAO, identifying the true EO-induced effect requires a process
of causal reconstruction [162] under explicitly defined interrogation conditions.

To separate the EO’s contribution from that of the EXOs, the true effect of the EO
can be expressed as:

True Effect of the EO = E
[
ŶAO | EO = 1, EXO = constant

]
− E

[
ŶAO | EO = 0, EXO = constant

]
,

(23.5)

which conditions on a fixed EXO configuration. Conceptually, this corresponds to a
counterfactual comparison under the same interrogation conditions: How would the AO
outcome appear if the EO’s effect were absent?

A variety of methodological approaches can be employed to perform this causal re-
construction under fixed interrogation conditions. One class of approaches relies on effect
decomposition [3] methods, which partition the measured AO outcome into components
attributable to the EO, the EXOs, and their interaction-induced derived effects. Another
class of approaches adopts controlled comparison strategies [72], in which EO and non-EO
objects are compared under identical EXO conditions to eliminate contextual variabil-
ity. Additionally, structural reconstruction techniques [163]—such as constraint-based
or score-based reconstruction of effect pathways—can be applied to infer the structure
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of the EO → AO relationship from observational data. Finally, testing provides a way
to verify the inferred effect. These approaches collectively ensure that the inferred effect
of the EO reflects the true effect of the EO rather than the advantages or perturbations
introduced by the surrounding EXOs.

In the framework of Evaluatology, accurate attribution elevates evaluation from de-
scriptive comparison to a form of causal accountability. Rather than simply contrasting
observed performances across STRIs, the evaluator examines why such performance
arises by tracing effect pathways and identifying how EXOs modulate, enhance, or con-
found the EO-induced effects. For example, an STRI’s high publication volume or strong
technology-transfer performance may reflect genuine internal capability, or may instead
be driven by favorable EXOs such as abundant funding, advantageous partnerships, or
unique temporal conditions. Without isolating these sources, evaluations risk conflating
contextual advantages with the intrinsic capability of the EO.

Ultimately, accurate attribution reframes S&T progress of STRIs as a context-
adjusted causal effect, revealing the true effect generated by the EO within a shared
evaluation environment. This principle provides the foundation for the next step: trac-
ing the internal components of the EO to determine how its internal effect mechanisms
collectively produce the measurable effects observed on AOs.

23.5 Tracing Internal Mechanisms: Component-Level At-
tribution within EO

After isolating the true effect of the EO from that of the EXOs, a further analytical step
is required to understand how this effect is internally generated within the EO. An EO
is not a monolithic object, but a structured system composed of multiple interdepen-
dent internal components that jointly determine its S&T progress. These components—
such as talent cultivation, evaluation and incentive structures, public service platforms,
management mechanisms and strategies, and technological specialization—function as
internal effect mechanisms. Their coordinated interactions ultimately shape the EO’s
measurable and testable effects on the AOs within the SES.

Let cEO = {c1, c2, . . . , cn} denote the set of internal components of the EO. Each
component ci contributes both individually and jointly to the observed AO outcome
ŶAO. The overall EO-induced effect can therefore be expressed as:

fEO(cEO→AO) =
∑
i

gi(ci→AO) +
∑
i<j

gij(ci, cj→AO) + εEO, (23.6)

where fEO represents the true effect of the EO on the AO, gi denotes the direct effect of
component ci, gij represents higher-order interaction-induced effects among components,
and εEO captures residual internal effects that are not directly observable.

To evaluate the marginal contribution of each component under a given EXO con-
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figuration, we consider the sensitivity of the AO outcome with respect to ci:

∂ŶAO
∂ci

=
∂fEO
∂ci︸ ︷︷ ︸

direct EO component effect

+
∑
k

∂fint
∂ci

∂xk
∂ci︸ ︷︷ ︸

EXO-mediated modulation

. (23.7)

Let ŶAO denote the measured effect on an AO. The first term represents the true contri-
bution of the internal component, while the second term captures how EXOs modulate
the component’s effect—such as how funding levels, collaboration opportunities, or pol-
icy incentives amplify or attenuate the contribution of a particular mechanism. This
differential formulation provides a quantitative basis for component-level attribution,
clarifying how each internal mechanism shapes the overall EO-induced effect on the
AOs.

From the perspective of Evaluatology, this analysis constitutes a form of mechanistic
attribution. It shifts the evaluative question from “How much true effect does this
EO generate?” to “Which internal mechanisms generate the effect, and through what
interactions?” Such insight enables targeted STRI improvement, evidence-based policy
design, and fairer cross-EO comparisons under heterogeneous EXOs.

At last, component-level attribution reveals that the S&T of an EO emerges not from
isolated functions, but from the synergistic coordination of multiple internal mechanisms
—each leaving a measurable causal footprint in the SES and collectively determining the
EO’s observable impact on the AOs.

23.6 Summary
This chapter presented that evaluating an STRI requires a shift from a bibliometric
approach toward a causally grounded revealing of how an STRI or its components induce
true effects within an STRI.
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Testbed Principles,
Methodologies and Case Studies

This chapter formalizes what a testbed is and presents principles, methodology, and a
case study of a testbed. I conceived the core concept, which Dr. Wanling Gao and I
jointly implemented.

24.1 What is a Testbed?
Testbeds —whether conceived as experimental platforms, emulated environments, or
full-fledged simulation systems —are indispensable tools for evaluating design choices
and implementation trade-offs across engineering domains.

However, testbeds are not formally defined. I define the testbed as an evaluation
model that is designed and implemented for a class or different classes of cause objects
or EO to simulate a perfect or imperfect, or simple SES, under which the effect of EOs
could be accurately attributed.

24.2 Testbed Principles
The essential purpose of a testbed is to enable controlled, repeatable, and interpretable
experiments through which the causal effects of EOs on their corresponding AOs can be
observed and quantified.

An ideal testbed is to simulate a perfect SES under which we can measure or test
the effects of EO on AOs under different EXOs. According to the discussions in Sec-
tion 14.2.1, a perfect SES has four unique characteristics: it can correctly recognize AOs
and EXOs; it can completely isolate irrelevant objects; under a perfect SES, we can infer
the true effect of the EO; we can freely manipulate the full space of SES.

Unfortunately, due to different limitations, we can only achieve imperfect SES in
most cases. So, above all, a testbed should embody the principle of controlled realism:
the ability to replicate the functional and causal relationships of an SES while providing
researchers with sufficient control and observability to infer EO effects accurately.
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Three guiding principles underlie the design of any testbed:

(1) Representativeness: A testbed must approximate a prefect or imperfect SES
with sufficient fidelity such that results derived from it remain valid and generalizable
to the actual system. Representativeness ensures that the essential relationships among
EO, AO, and EXO are faithfully maintained, even if simplified. For example, a hardware
simulator that preserves timing and dependency characteristics can yield representative
insights even without physical circuitry.

(2) Controllability: A testbed should allow for explicit manipulation of both EO, AO,
and EXO configurations while holding irrelevant variables constant. This capacity for
controlled experimentation is what transforms an imperfect SES into a more analyzable
model. In the ideal scenario (perfect SES), all irrelevant influences can be eliminated;
in practice, the testbed approximates this condition as closely as feasible.

(3) Transparency and Repeatability: A testbed must support full visibility into
its internal states and permit experiments to be replicated with deterministic or statis-
tically bounded outcomes. Transparency ensures interpretability—researchers can trace
observed results back to underlying causes—while repeatability ensures that results can
be validated independently.

In essence, the testbed operationalizes Evaluatology’s central aim: constructing a
measurable, manipulable, and inferable environment that enables the transition from
observation to causal understanding. Whether for a perfect, imperfect, or simple SES,
every testbed serves as a concrete realization within the constraints of technology, knowl-
edge, and resources.

24.3 Fundamental Testbed Methodologies

Building upon the principles above, testbed methodology defines how evaluators con-
struct, operate, and refine testbeds to achieve reliable causal inference within practical
constraints. The methodological foundation of testbeds rests upon their correspondence
to the three SES types—perfect, imperfect, and simple—each representing a different
trade-off between fidelity and feasibility.

(1) A Testbed Simulating a perfect SES (in short, perfect testbed): A perfect
testbed represents the theoretical ideal scenarios where all irrelevant objects are fully
isolated, and all relevant interactions are explicitly modeled. In such environments,
researchers can infer the true EO effect because the causal structure is entirely transpar-
ent. For instance, in algorithmic benchmarking under a fully deterministic simulation,
every input, random seed, and computational state could be changed and fixed, enabling
perfect reproducibility. However, such testbeds are often unattainable in reality due to
their prohibitive complexity and abstraction cost.
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(2) A Testbed Simulating an imperfect SES (in short, imperfect testbed):
An imperfect testbed approximates the real-world system but inevitably includes cer-
tain external factors that cannot be fully controlled or isolated. In other words, while
the testbed seeks to capture the causal relationship between the EO and the AO, some
influences from the surrounding environment or unobserved variables may remain. Al-
though this lack of complete isolation introduces uncertainty into causal inference, it
enables the evaluation to reflect more realistic and operational conditions.

For example, when evaluating CPUs under different environmental temperatures,
the performance results may vary due to thermal effects. Such incomplete control—
referred to as imperfect isolation—means that the influence of temperature cannot be
entirely excluded. However, this variability also makes the results more representative
of real-world usage. Hence, an imperfect testbed provides a pragmatic balance between
causal rigor and ecological validity.

(3) A Testbed Simulating a simple SES (in short, simple testbed): Recognizing
the infeasibility of exhaustive evaluation, a simple testbed reduces the complexity of the
evaluation environment through both sampling and simplification.

Formally, a simple SES defines a reduced and sampled perfect or imperfect SES
(detailed formalization in Section 14.2.3) that captures representative configurations.
This subspace may be obtained through experimental design principles—such as facto-
rial sampling, stratified selection, or Latin hypercube methods—to ensure diversity and
coverage while controlling evaluation cost.

Beyond sampling, simplification can be achieved by abstracting or aggregating vari-
ables within the SES. For instance, rather than modeling every environmental parameter
in detail, closely related variables (e.g., temperature and humidity) can be combined into
a single composite factor; or, less influential EXOs can be fixed to typical values to fo-
cus on primary sources of variability. Such simplifications maintain the essential causal
structure while reducing computational and experimental burden.

In essence, a simple SES is an EO equipped with a simplified and sampled EC. It
trades completeness for tractability—omitting minor or redundant conditions—yet re-
mains grounded in statistical validity and causal interpretability. By doing so, it enables
efficient, scalable, and interpretable evaluation without losing sight of the underlying
causal mechanisms.

(4) Evaluation Procedure: Across all SES types, the general procedure of testbed
design and implementation consists of four canonical phases:

1. Model Construction: Define EO, AO, and EXO, and formalize their relationships
within the testbed architecture.

2. Condition Sampling: Generate a representative EC set of C ′ that spans key vari-
ations in EXO and AO parameters.
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3. Outcome Measurement: Execute controlled experiments to obtain outcome distri-
butions oe(o|c′)(detailed formalization in Section 12.1.1), accounting for stochastic
variability through repetition.

4. Effect Inference: Apply statistical analysis (e.g., ANOVA, regression, or covariance
decomposition) to estimate the inferred effects of the EO on AOs.

5. Hypothesis Testing: Perform a hypothesis test on the inferred effects of the EO on
AOs.

This structured methodology provides a unifying framework: perfect testbeds guar-
antee theoretical validity; imperfect testbeds offer empirical realism; and simple testbeds
ensure scalability. Together, they form a methodological continuum that adapts Evalu-
atology to both scientific inquiry and engineering application.

24.4 Case Studies
To illustrate the application of testbed principles in practice, we examine representative
cases across distinct evaluation domains, demonstrating how different SES types and
testbed methodologies are instantiated.

Case 1: CPU Performance Evaluation: In hardware performance benchmarking,
the EO is the CPU, the AO is the computing system (including OS, memory, and disk),
and the EXO consists of workloads, datasets, and compilers.

Different testbed exemplifies Ealuatology’s balance between rigor and feasibility.
A perfect testbed provides the means to evaluate a CPU while isolating and exploring

all AO and EXO space—an unattainable ideal in practice.
An imperfect testbed provides the means to evaluate a CPU by executing stan-

dardized benchmarks (e.g., SPEC CPU [181]) under controlled but not fully isolated
conditions on limited AOs.

A simple testbed, such as cloud-based benchmarking platforms, samples representa-
tive workloads across configurations on a fixed AO and applies statistical inference to
estimate CPU-specific performance while accounting for environmental noise.

Case 2: Drug Efficacy Evaluation: In biomedical evaluation, the EO is the drug
compound, the AO is the human body, and the EXO includes diet, stress, and envi-
ronmental exposure. A perfect testbed corresponds to a theoretical physiological model
with a fully controllable AO and EXO that completely isolates the drug’s biochemical
effects—impossible in reality.

Clinical trials thus represent imperfect testbeds, where randomization and blinding
serve as tools to approximate equivalent evaluation conditions.

A simple SES arises in simulation-based pharmacokinetics, where population-based
sampling models the drug’s effect across synthetic patient cohorts, providing scalable
yet interpretable estimates of efficacy.
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Discussion: Across domains, these case studies reveal a recurring trade-off: the cost
increases with fidelity. Thus, the practical art of testbed design lies in constructing simple
SESs—testbeds that retain essential causal structures while remaining operationally
feasible. Such testbeds operationalize Evaluatology’s fundamental vision: transforming
abstract causal reasoning into reproducible, evidence-based evaluation that bridges the
gap between theory and practice.

24.5 Summary
This chapter establishes a unified theoretical and methodological foundation for testbeds
within the framework of Evaluatology.
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Chapter 25

Evaluatology-based Artificial
Intelligence

In this chapter, we begin by defining the fundamental concepts, assumptions, and prob-
lem formulations that ground artificial intelligence (AI). Among various AI paradigms,
we focus on the prevailing data-driven deep learning paradigm. Despite its empirical suc-
cess, this paradigm remains a black box: it can judge whether outcomes are good or bad
but provides little understanding of why they occur or how models can be systematically
improved.

I conceived the core concept, which Dr. Guoxin Kang, Dr. Wanling Gao, and I
jointly implemented.

25.1 The Limitations of Existing AI Paradigms
Early AI was dominated by the symbolic paradigm, grounded in the belief that intelli-
gence could be fully captured through symbolic logic and explicit rules [131, 130, 133, 67].
This paradigm laid the conceptual foundation for the Turing Test [205], defining in-
telligence as the capacity for symbolic manipulation. Expert systems represented the
practical culmination of symbolic AI, encoding human knowledge into rule-based en-
gines [27, 46, 117, 42]; however, they suffered from limited scalability and an inability
to learn from data.

These limitations catalyzed the rise of the connectionist paradigm, which is inspired
by biological neural networks [161, 81, 84]. Hebb’s seminal theory linked synaptic adap-
tation to learning, providing a theoretical bridge between neuroscience and machine
learning [79]. Building on multilayer neural architectures and efficient training algo-
rithms, deep learning emerged by enabling models to automatically discover patterns
and statistical regularities from large-scale data [106, 76, 110, 210, 49].

In contrast to the symbolic paradigm and early connectionist advances, modern AI
has been shaped by a data-driven deep learning paradigm, which assumes that intelli-
gence can be approximated by learning statistical regularities from massive datasets [98].
This data-centric principle has reached its most visible success in large language models
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(LLMs) [25], whose performance scales predictably with training data volume, model
size, and compute budget [99]. However, this scaling paradigm is increasingly con-
strained by a looming data bottleneck. As high-quality human-authored data becomes
saturated and expensive to curate, synthetic data generation has emerged as a promising
alternative.

Despite its scalability, synthetic data introduces a new layer of complexity [179, 125,
14]. Crucially, the quality of synthetic data is fundamentally limited by the generative
models that produce it, which are often black-box architectures with little transparency
or interpretability. This lack of visibility makes it difficult to trace the root causes
of errors or biases in downstream models back to specific properties of the synthetic
data. When performance deteriorates, it remains unclear whether the issue lies in data
coverage, semantic consistency, or deeper representational flaws.

In practice, current synthetic data suffers from several well-documented issues: 1)
generative models may fail to match the statistical distribution of real data, introducing
biases that impair generalization. 2) Synthetic samples often contain logical contradic-
tions or distorted features that are difficult to detect but can corrupt pre-training. Low
diversity and mode collapse: generators tend to produce samples with limited variation,
leading to models that overfit narrow modes and underperform on real-world variability.

To improve the quality, reliability, and usefulness of synthetic data, it is imperative to
enhance the interpretability and evaluation of generative models. Without understand-
ing what a generator has learned, and what it systematically omits, scaling synthetic
corpora becomes a blind process, susceptible to spurious correlations and misalignment.

These observations motivate a shift toward an Evaluatology-based AI paradigm,
in which systematic attribution and interpretability are not afterthoughts but central
components of the AI development cycle. Regardless of the data source, all data are
inherently generated under specific conditions. However, prevailing AI training methods
largely ignore these generative conditions and focus exclusively on the data themselves.
Such a deficiency leads to uneven and difficult-to-evaluate data quality, constrains inter-
pretability and the capacity for causal discovery, and renders models fragile in the face
of novel scenarios.

Our research intuition is that explicitly incorporating both data and their gener-
ative conditions into the training process can substantially enhance the effectiveness
and transparency of AI. Even under limited data availability, leveraging the interplay
between data and conditions allows the discovery of deeper causal structures, enabling
models to capture the invariant informational essence beneath data diversity. By ground-
ing learning in condition-aware causal relationships, we move toward more interpretable,
attributable, and genuinely intelligent systems.

25.2 Basic Concepts and Principles of Deep Learning
We introduce the foundational concepts and principles of the data-driven deep learning
paradigm.
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25.2.1 Basic Concepts
Model Architecture. In the data-driven paradigm, the model architecture typically refers
to deep neural networks, which serve as function approximators mapping inputs to out-
puts. These architectures are designed to scale with data volume and computational
resources [111, 210, 71].

Dataset. A dataset comprises a large collection of labeled or unlabeled samples, used
to train the model [106, 77, 197].

Loss Function. A loss function L quantifies the prediction error between the model
output and the ground truth. Training aims to minimize this error over the dataset, i.e.,
minθ L(D; θ), enabling the model to learn the input–output mapping [161, 71, 36, 18].

25.2.2 Basic Principle
Given sufficiently large training data D, sufficiently large model capacity (i.e., number
of parameters) θ, and sufficient compute budget C, a deep learning model fθ is assumed
to be capable of solving increasingly complex real-world tasks T via empirical risk min-
imization [208, 110, 71, 99, 83]:

θ̂ = argmin
θ
L(D; θ), (25.1)

where L is a loss function and θ̂ denotes the parameters of the optimized model obtained
by minimizing the empirical loss. The model performance is typically evaluated by
aggregate statistical metrics such as accuracy:

Performance =M(fθ̂, T ), (25.2)

whereM denotes a statistical measurement (i.e., a quantitative performance metric) and
the compute budget C is assumed to scale proportionally with the model parameters and
training data [99]:

C ∝ θ · D. (25.3)

However, these metrics are often treated as black-box indicators and offer limited causal
interpretability [116, 52, 141].

25.3 The New AI Paradigm Based on Evaluatology
The Evaluatology-based AI paradigm constructs an SES, shifting AI research from
merely answering “Is the model good?” to systematically address “Under what ECs
is it good?”, “Why is the model good?”, and “Which key design changes can make the
model better?”. As shown in Figure 25.1, this paradigm moves toward AI systems that
are not only interpretable and causally attributable but also capable of more general in-
telligence. The following sections introduce the core elements of the Evaluatology-based
AI paradigm and its four-step frameworks, which offer a promising path toward genuine
general intelligence.
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Figure 25.1: Evaluatology-based pathway toward strong AI.

25.3.1 Core Components of the SES
Section 12.1.2 formalizes the design problem in Evalutology. The EO is the object to
be evaluated and designed, which manifests itself in various forms, including algorith-
mic structures such as a video retrieval network, an encoder-decoder architecture, or a
recommendation algorithm, as well as core computer system components such as a CPU
or a database system. The purpose of design is to search the specific EO configuration
that achieves the optimal overall effect

The EXOs, together with the EO, jointly determine the overall effect on the AO.
These include the training data, experimental configurations, hyperparameters, and en-
vironmental factors that define the context in which the model operates.

Please note that in Section 3, we defined data as “raw interrogation outcomes or
their derived ones in different interrogation conditions.” Every data sample, whether
observational or experimental, must be generated under explicit interrogation conditions
that specify the scene, data collection process, potential biases, and evaluation metrics
used. This ensures causal traceability and reproducibility.

The AO reflects the measurable outcome or behavior influenced by both the EO
and EXOs. It often corresponds to the computer system’s measurable performance on
downstream tasks, such as accuracy, latency, or robustness in deployment environments.
The overall effect refers to the impact on the AO caused either by the design of the EO
or by variations in the EXOs.
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25.3.2 Structured Frameworks for Advancing to Strong AI
Building upon these established definitions, as shown in Figure 25.1, the Evaluatology-
based paradigm instantiates them within the context of AI to develop intelligence
through a progressive path, each reflecting a distinct relationship among the EO, EXOs,
and AO.

Step I: Design and Implement a Perfect EC: At this foundational level, for
any given EO and its associated EXOs and AO, a theoretically complete real-world
distribution exists—that is, all possible ECs under which the training data could be
generated. If sufficient resources such as time or computational power were available,
this distribution could be exhaustively traversed, in principle. This step corresponds
to conditional brute-force computation, which establishes the empirical foundation of
intelligence by covering the entire EC space, although at high cost.

Step II: Explore the Design Space of EO Under a Perfect EC: Under a perfect
EC, AI begins to explore the design space of an EO to identify potential design pos-
sibilities that faithfully reflect real-world behavior. The exploration typically proceeds
in three steps: brute-force ensures exhaustive coverage of the design space, heuristic
approaches leverage prior causal understanding and empirical knowledge to focus on
high-potential regions, and pruning removes redundant or unproductive design paths
to improve efficiency and convergence. Together, these steps enable AI to explore the
design space systematically and efficiently at lower cost, preparing the ground for high
complexity exploration under simple ECs.

Step III: Achieve High Complexity of Interrogation: After acquiring the ability
to explore the design space, it advances into the stage of interrogation, engaging in
epistemic inquiry through measurement, testing, reasoning, and evaluation. Guided by
stakeholder requirements and under a fixed EO, AI systematically explores the EC space
defined by the EXOs and AO to separate the effect of different objects and enable causal
attribution. Through this process, it decomposes the overall effect on the AO into the
respective effects of the EO and the EXOs, while refining the ECs to identify the ECs
that most significantly influence performance.

Step IV: Achieve High Degree of Free Will: At this step, AI advances from causal
understanding to intentional imagination, creation, and autonomous design. Supported
by higher-order cognitive mechanisms such as counterfactual simulation, generative com-
position, and self-evaluation. Guided by the fixed simple ECs derived from the previous
step, it first imagines alternative possibilities grounded in learned causal principles, then
creates new designs of the EO through generative models, and ultimately performs au-
tomatic design—the process of finding a specific EO configuration to achieve optimal
overall effect. Through this progression, AI demonstrates free and intentional decision-
making, achieving creative generalization across contexts.
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25.3.3 Summary of the Four Steps
The four steps outline a progressive path for the Evaluatology-based AI paradigm. The
first step establishes the perfect EC. The second step explores the full design space of
the EO under perfect EC. The third step interrogates under simple ECs to separate the
effects of the EO and the EXOs. The fourth step enables intentional and autonomous
design within fixed, simple ECs. Together, the four steps articulate a path for advancing
AI toward an interpretable, self-improving, and causally grounded form of intelligence.

25.4 Case Study
To illustrate how the Evaluatology-based AI paradigm can advance database automatic
design, we present the following case study.

In database automatic design [33], Evaluatology begins by defining the perfect EC.
The EO is the database index, the AO corresponds to a minimally independent running
database system, and the EXOs consists of all factors that influence index performance.
The EXOs include, but are not limited to, data distribution and skew patterns, schema
evolution and update frequencies, storage layout, and compression rules. Inspired by
CPU Evaluatology, the EXOs are not fixed [213]; instead, workload and access distri-
butions dynamically adapt to stakeholder requirements, reflecting realistic production
variability rather than relying on a static benchmark.

Under the perfect EC, the full design space of the EO is explored. In a row-store
database, accelerating access generally requires building indexes on selected columns.
For a table with n columns, allowing arbitrary choices of column subsets and orders
leads to a combinatorial design space of

n∑
k=1

n!

(n− k)!
, (25.4)

which grows factorially and becomes computationally intractable. Here, k = 1, 2, . . . , n
denotes the number of columns included in an index. AI examines this large space
using a combination of brute-force enumeration to approximate completeness, heuristic
exploration to focus on promising index patterns, and pruning to eliminate redundant
or unproductive design paths.

From this exploration, the perfect EC is distilled into simple ECs that more faithfully
simulate realistic deployment scenarios. These simple ECs capture factors such as mixed
read/write ratios, skewed query distributions, and hardware-dependent cost models,
allowing AI to analyze index performance under resource-aware and stakeholder-specific
conditions.

With simple ECs established, AI performs interrogation through the four funda-
mental modes. Measurement quantifies index performance across workload variations;
testing validates behavioral stability under simple ECs; evaluation integrates empirical
evidence and reasoning to infer the true effect of each candidate index; and reasoning
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explains why certain index structures lead to performance gains or regressions. This epis-
temic process produces a scientifically interpretable understanding of how index design
factors shape system performance.

Finally, in the step of free will, the EO gains the capability for intentional redesign.
Guided by the causal principles uncovered during interrogation, AI autonomously imag-
ines alternative index forms, creates new structural variants, and performs automatic
design to generate indexes that best satisfy stakeholder requirements. This moves be-
yond selecting from existing templates, such as B-tree, hash, or bitmap indexes, and
enables the invention of novel index structures, achieving Evaluatology-driven database
intelligence.

25.5 Summary
This chapter presented that the Evaluatology-based AI paradigm provides a new path-
way beyond these constraints by redefining intelligence as a progressive path across a
four-step evolution. This path establishes a dual relationship between evaluation (fixing
EO, varying EC) and automatic design (fixing EC, varying EO), outlining a promising
path for AI to evolve from an opaque data-driven black box toward an interpretable,
causally grounded, and self-improving form of general intelligence.
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